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An exact, computer-oriented, Monte Carlo procedure is derived for numerically simulating 
continuous-time/discrete-state random walks in which the transition probability per unit 
time from state S,,, to state S, may depend upon the residence time 7 in the state S,,, . Condi- 
tions for applicational feasibility of the simulation procedure are briefly indicated, and 
explicit stepping algorithms for some simple T-dependencies are obtained. 

1. INTRODUCTION 

Consider a system that executes a “random walk” over a discrete (possibly infinite) 
set of states S, , S, ,..., according to the following transition rule: 

If the system is in the state S, at time 2, having arrived there at time t - T 
(7 2 0), then the probability that it will step to some other state S, in the 
next infinitestimal time interval (t, t + dt) is 

4mW dt. (1) 

The function A,,(T) is assumed here to be a given, nonnegative function of the integer 
state labels 12 and m and the nonnegative real variable 7.l If A,,(T) is constant with 
respect to T, then the infinitesmal transition probability depends on the past only 
through the current state S, , and the random walk is termed a “Markov process.” 
The more general case in which the infinitesimal transition probability also depends 
upon how long a time 7 the system has been in the current state S,,, is sometimes 
referred to as a “semi-Markov process” [l]. 

The purpose of this article is to present a computer-oriented Monte Carlo procedure 
for numerically simulating the random walk process (1). This simulation procedure is 
essentially a generalization of an algorithm presented in an earlier issue of this journal 
for simulating the stochastic time evolution of a spatially homogeneous, chemically 

1 The form of the dependence on n and m will of course depend upon how one chooses to label the 
states. It is immaterial for our purposes whether one uses an explicit, fixed labeling scheme, or a 
highly implicit labeling scheme that changes after each step. This point will receive further attention 
in Section 3. 
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reacting system [2]; in that case, the system executes a Markov random walk over the 
space of the molecular population numbers of the participating chemical species, 
with the form of the stepping probability rate function being determined by the 
various chemical reaction channels. That computational algorithm will here be 
generalized to cover semi-Markov random walks. It will be shown that this generalized 
simulation procedure is exact in the sense that it is a mathematically rigorous conse- 
quence of (1). However, whether or not the simulation procedure is feasible will 
depend on the specifics of the random walk at hand. Roughly speaking, the method 
should be feasible whenever the walk is such that, for a given m, A,&T) vanishes 
for all but a relatively few values of n, and the T-dependence of the nonvanishing 
A,,(T) is not too complicated. No specific applications of the algorithm will be 
attempted here; however, it should be noted that possible candidates for this do exist 
in certain generalized random walks currently being considered elsewhere as models 
for transient photocurrents in amorphous semiconductors [3-61 and for exciton trans- 
port in photosynthetic units [7]. 

Rigorous analytical treatments of random walk processes are usually based on the 
so-called “master equation”, which is the time-evolution equation for the function 
p(m, t) = probability of being in the state S, at time t. Unfortunately, the master 
equation is usually quite formidable, and can seldom be solved even with the help of a 
powerful computer. For a Markov random walk, the master equation does have the 
virtue of being linear in p(m, t), and this circumstance permits one to readily deduce 
time-evolution equations for the physically significant averages or moments of &m, t). 
Although these moment equations are seldom solvable exactly, they can usually be 
reduced through suitable approximations to a tractable system of ordinary differential 
equations (e.g., the set of coupled “reaction-rate” equations for a spatially homoge- 
neous chemically reacting system). A more common, but less rigorous, way of 
obtaining these simplified rate equations for a Markov process is to regard A,, dr as 
measuring the number of S, + S, transitions in time dt instead of the probability of 
an S, ---f S, transition in time dt; this has the effect of approximating the given discrete, 
stochastic random walk process by a continuous, deterministic rate process. How- 
ever, it is not at all obvious how to create such an approximate rate formalism when 
A,, is a function of the residence time in the state S, . Indeed, the master equation 
for a semi-Markov random walk turns out to involve a time-convolution integral 
[7-II], and this indicates that the corresponding time-evolution equations for the 
various moments of P(m, t) will have a much more complicated structure than they 
would have in the pure Markov case. 

These considerations suggest that a reliable numerical simulation method might be 
a very useful tool for studying specific examples of the random walk (1). Moreover, 
the existence of a viable simulation technique for the process (1) might encourage 
investigators in the physical, biological, and social sciences to experiment more 
freely with models of this type in their respective fields of research. 

It should be noted that (1) is not the only way to specify a semi-Markov process. A 
specification format that turns out to be especially convenient from the standpoint 
of the master equation is [7-l I]: 
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If the system arrives in the state S,,, at time t, then the probability that it 
will next step to state S, in the infinitesimal time interval (t + T, 
2 + 7 + do) is 

Here, #(T 1 m) is the probability density function for the pausing time 7 in the state S, , 
and T+Z, m) is the stepping probability from state S, to state S,, . The precise mathe- 
matical relationship between formats (1) and (2) will be elaborated on in the next 
section. However, the focus of this paper will be primarily on the specification format 
(1). This choice reflects the writer’s own opinion, based on past experiences with 
physical systems that behave in a Markovian fashion, that the function A,,(T) will 
probably have a more direct relationship to the physical parameters of a real physical 
system than will the pair of functions 7~(n, m) and #(T 1 m). In any event, this paper 
will be concerned chiefly with the simulation of those stochastically evolving systems 
which are such that (1) provides a more “natural” specification of the transition 
dynamics than (2). 

2. THE TRANSITION PROBABILITY DENSITY FUNCTION 

Since (I) does not specify A,,(T) for n = m, we shall for convenience put 

A&&T) = 0. (3) 

Then if we define 

&n(T) = 1 -‘h,(T), (4) 
n 

it follows from (1) and the addition law of probability theory that 

A,(T) dt = probability that the system in state S, at time t, having 
arrived there at time t - 7, will step away from S, during 
0, t + dt). (5) 

The key theoretical construct upon which our Monte Carlo simulation procedure is 
based is the transition probability density function P(r, n 1 m, t), which is defined by 
the statement 

P(T, n I m, t) dT z probability that, given the system arrives in the 
state S,,, at time t, the next transition will occur in the 
infinitesimal time interval (t + 7; t + 7 + dT) and 
will be to the state S, . (6) 

P(T, n 1 m, t) is a joint probability density function of the real variable T and the 
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integer variable n, conditioned on m and t. For a random walk specified by (2), 
P(T, y1 ) m, t) do is evidently equal to n(n, m) #(T 1 m) do. However, in order to set 
the stage for an explicit Monte Carlo simulation procedure for a random walk 
specified by (l), we shall require an expression for P(,, n I m, t) in terms of the given 
function A,,(7). This will also allow us to elucidate the precise connection between 
(1) and (2). 

Using (l), the probability in (6) may be expressed as 

P(T, n / m, t) dT = L?(T 1 m, t) . A,(T) dT, (7) 

where the auxiliary quantity Y(T 1 m, t) is defined by 

g(T / m, t) = probability that, given the system arrives in the state S, at 
time t, no transition will occur in the time interval 
(t, t + 7). @a> 

To obtain an expression for P(T 1 m, t), we need only observe that it must satisfy 
[cf. (31 

g(T + dT / m, t) = g(T 1 m, t)[l - A,(T) dT], 

or equivalently 

dg(T 1 m, t)/p(T / Wl, t) = --A,(T) dT. 

Integrating this last relation subject to the required initial condition L@‘(O I m, t) = 1 
gives 

fl(T 1 m, t) = eXp [ - I,’ &(T’) d+] . (8’4 

Substituting this into (7) yields the result 

P(T, It 1 m, t) = A,,(T) eXp [ - 6 A,(+) dT’]. 

Before we proceed to cast (9) into a form more suitable for Monte Carlo purposes, 
let us digress here to establish the connection between (1) and (2). As noted earlier, 
for systems described by (2), P( 7, n 1 m, t) is equal to rr(n, m) #(T I m). Combining 
this with (9) gives 

+, m) #(T 1 m> = &n(T) ‘=P [ - JOT &a(+) dT’]- (10) 
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Now ~(n, m) in (2) is presumed to satisfy Cn YT(~, m) = 1, so by summing (10) over n 
and recalling the definition (4) we obtain for #(T 1 m) the formula 

#(T 1 m) = A,(T) exp [ - s,’ A,(+) U]. (114 

Substituting this back into (10) then gives for ~(n, m) the formula 

“dn, m) = &d~)/&dT)- (lib) 

Equations (11) define the translation from the random walk specification (1) into 
the random walk specification (2). We notice from (11 b) that the function r must be 
Written a@, m, T) UnkSS the ratio &&T)/&( 7 is independent of 7 for all n and m. ) 
One case in which that ratio is obviously independent of T is for the Markov process, 
‘km(T) = km ; substituting into (1 la) and (11 b) shows that, for this case, #(T 1 m) = 
a, exp(-a,T) and +z, m) = a,,/a, , where a, = Cnanrn . 

We can “invert” Eqs. (11) by first integrating (1 la) over 7, solving for the integral 
of ‘lln > and differentiating the result, to obtain 

Then putting this into (1 lb) and solving for A&T) gives 

as the formula for translating the random walk specification (2) into the random walk 
specification (1). We see from (12) that if VT is independent of 7 then A,,(T) will have 
the functional form f(n, m) g(T, m). We also see from (12) that if Jim $(T’ 1 m) dT’ = 1 
for someJinite 7, , and hence alSO t,b(T 1 m) f 0 for 7 > 7, , then A,(T) diverges at 
7 = 7, and is indeterminate for 7 > 7, . The reason for this apparently bizarre 
behavior can be readily understood from (1) though, if one merely considers that 
definition for the situation in which the system is certain to leave the state S,,, by 
the time t + T, . Obviously, random walks having this property are more naturally 
described in terms of (2) rather than (1). 

For the purpose of deriving a Monte Carlo method for numerically simulating the 
random walk defined in (1) it will prove convenient to express the probability (6) 
in the “conditioned” form 

P(T, n 1 m, t) dT = pl(m, t) * P2(T I m, t) dT * P3(n 1 m, t; T), (13) 

where the quantities on the right are defined as follows: 

Pl(m, t) E probability that the system, arriving in S, at time t, 

will eventually leave S, (i.e., will not stay in S, 
forever); VW 
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P2(, 1 m, r) & = probability that the system, arriving in S, at time t, 
will next leave S, in (t + T, t + T + do), given that 
the system does eventually leave S, ; Wb) 

P&I / m, t; T) = probability that the system, arriving in S, at time t, 
will jump next to S, , given that the next jump is made 
at time t + 7. (14c) 

We shall now use (9) to obtain explicit expressions for these three probabilities in 
terms of the given function A,,(T). For convenience, we first define the quantity 

B,(T) = j”’ A&T’) dT’, 
0 

so that (9) takes the form 

P(T, n I lfl, 0 = A,(T) exP[-4ddl. 

(15) 

(16) 
- 

The definition in (14a) implies that Pl(m, t) may be calculated as 

where we have used (16) and (4). Changing integration variables here from 7 to 
B,(T) [see (15)], this integral is easily evaluated to give 

P,(m, t) = 1 - exp[-B,( co)]. (174 

We note in passing that, if B,( co) < oc), there is a nonzero probability, namely, 
exp[-B,( co)], that the system will never leave the state S, . We do not disallow this 
possibility. 

Now denoting by P(T, n 1 m, t) the normalized transition probability density 
function-i.e., P(T, n j m, t) dT is the probability that the system, upon arriving in 
S, at t, will next jump to S, in (t + T, t + T + dr), given that it does indeed make 
another jump-we evidently have 

P(n, 7 1 m, t) = P(n, 7 I m, t)/Pl(m, t). 

The definitions in (14b) and (14c) imply that P2(, I m, t) and P&t I m, f; T) may be 
calculated from P(n, T [ m, f) according to 
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and 
P& 1 m, I; T) = F(n, 7 1 m, f)/P2(7 I m, t). 

These calculations are easy, and they yield 

As a check on the above results, it will be observed that when the expressions in 
(17a), (17b) and (17~) are substituted into the right side of (13), the result agrees 
exactly with (16). 

3. THE SIMULATION PROCEDURE 

1: order to simulate the random walk defined by (l), we must be able to do the 
following: For the system arriving in any state S, at any time t, we must be able to 
determine at what time t + 7 the next step should occur, and to which state S, that 
next step should be. The reason for introducing the transition probability density 
function P(T, n 1 m, t) in the previous section is that it allows us to state this require- 
ment in more precise mathematical terms: For the system arriving in any state S, 
at any time t, we must be able to draw or “generate” a pair of numbers (7, n) from 
the set of random pairs whose joint probability density function is P(T, IZ ( m, t). 

For the purpose of accomplishing this task on a digital computer we shall assume 
that we have access to a “unit-interval uniform random number generator.” This is 
simply a computer subprogram which, when called, calculates and returns a random 
number I from the uniform distribution in the unit interval. More precisely, the 
a priori probability that any generated value r lies inside any given subinterval of the 
unit interval is equal to the length of that subinterval and is independent of its loca- 
tion : 

ForanyO <a <b < 1, Prob{a < r < b} = b - a. w-9 

For brevity we shall refer to any unit-interval uniform random number generator 
subprogram as URN. Nowadays, virtually every large computer facility has an URN 
subprogram in its library file that is fast, easy to use, and sufficiently “random” for 
our purposes. Assuming ready access to such a subprogram, our procedure for 
generating a random pair (7, n) according to P(T, n 1 m, t) iS as fOllOWS: 

Draw two random numbers rl and r2 from the unit-interval uniform distri- 
bution (i.e., from URN). If the inequality 

hl(l/r,) < j-m A&T’) dT’ 
0 

(194 
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is satisfied, then choose T so that 

I ’ A&T’) d7’ = ln(l/r,), 
0 

(19b) 

and next choose n so that 

?z’=l TL’=l 

where T is the value determined in (19b). If the inequality (19a) is not satisfied, 
then take T = co (i.e., terminate the random walk in the state S,). 

That this algorithm indeed generates a random pair (T, n) distributed according to 
the joint probability density function P(T, n / m, t) of Section 2 is proved in Section 4.2 
The solution of (19b) for T is to be accomplished analytically if possible, but numerical- 
ly if necessary; the solution of (19c) for n may be effected by means of a simple do-loop 
in the computer program. Using this algorithm, our procedure for numerically 
simulating the random walk (1) is now fairly straightforward: , 

Step 0 (initialization). Set the variable m (the current state index) to the prescribed 
initial value m, , and set the variable t (the current time) to 0. 

Step 1. Establish, relative to the current state S,,, , an indexing scheme n = 1,2,..., 
A’, for all states S, for which A,,(T) is not identically zero; then calculate the function 

A,(T) = F P&&T). 

n=1 

Step 2. Using the functions A,,(T) and A,(T) established in Step 1, generate a 
random pair (T, n) with the generating algorithm (19). 

Step 3. Replace t and m by t + 7 and n, respectively; then return to Step 1. 

The l-2-3 sequence above is to be iterated until t has reached some predetermined 
value, or until the system “sticks” in some state S, because of the failure of the 
inequality (19a). Notice that, if the integral on the right of (19a) is infinite for all 
states S, , as is the case with many random walks, then (19a) will always be satisfied 
and that test may be omitted. 

If the random walk is such that N, in Step 1 is normally very large, or the functions 
A,,(T) and A,(T) are very complicated, then this simulation procedure will obviously 
be too cumbersome to implement. When these parameters are “reasonable,” the key 
to a successful implementation may well lie in how efficiently one can accomplish 
the “reindexing of states” in Step 1. In that connection, we might take note of what 

2 For a random walk specified according to (2) with J:” g(~ ) m) d7 = 1 for finite +m , it is simpler 
to use the following generating procedure: Draw two random numbers r1 and rz from URN; choose 
7 so that c #(T’ I m) d7’ = r1 , and choose n so that X~7~, +I’, m) < r2 < Zz,=, n(n’, m). 
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amounts to an implicit reindexing scheme used in simulating the time evolution of a 
spatially homogeneous chemically reacting system (which constitutes a Markovian 
random walk over the space of the molecular population numbers) [2]: Instead of 
dealing directly with the possible states S, to which the system may jump from the 
current state S, , attention is focused on the possible reactions R, that may occur in 
that state. Unlike the possible “next states,” the possible “next reactions” do not 
change from state to state, so a considerable simplification is achieved by replacing 
in the transition probability density function the “next state” index n by the “next 
reaction” index p; once the next reaction R, has been selected, the system can then be 
“moved” to the next state by simply altering the molecular population numbers in 
accordance with R, . Generalizing from this, it may be that the reindexing of states 
in Step 1 can be most easily accomplished implicitly, by focusing on the single-step 
transition channels instead of on the possible next states themselves. 

If we carry out the simulation procedure described above, we will obviously 
produce only one realization of the random walk defined by (1). If we want to calculate 
ensemble averages of the kind that are (in principle) calculable from the grand proba- 
bility function &v, t), then we will have to carry out many simulation runs, all 
identical except for the URN values used. The ensemble average of any state function 
at time t may then be calculated as the direct (equally weighted) average of the values 
found for the state function at time t in these simulation runs. The number of runs 
required for this type of calculation will depend strongly on the system under consider- 
ation, the state function whose average is sought, and the level of statistical accuracy 
that is desired. Obviously there will be instances in which such a calculation will not 
be feasible because an unaifordably large number of runs is required. But in situations 
where the master equation is simply too complicated to handle, the simulation 
approach may be the best that one can do. Even for cases in which the master equation 
is tractable the simulation procedure can still be useful, because its ability to follow 
individual realizations of a random walk provides a nice complement to the ensemble 
average characterization provided by the grand probability function P”(m, t). 

4. PROOF OF THE GENERATING ALGORITHM 

In this section we shall prove that the random pair (7, n) generated by the algo- 
rithm (19) is indeed distributed according to the joint probability density function 
P(T, n 1 m, t) in Section 2. For this purpose, we define the following three probabilities 
with respect to the algorithm (19): 

PT(m, t) = probability that (19a) will be satisfied, so that the 
random walk does not terminate in S, ; @a) 

P~(T 1 m, t) = probability density function for the T-value selected 
by VW; (20’4 

P$(n 1 m, t; T) = probability that (19c) will select the value n. P4 



404 D. T. GILLESPIE 

Our proof will consist of showing that PI, * P.f, and P,* defined above are identical 
respectively, to the functions P, , P, , and P, in Section 2 [see Eqs. (14) and (17)]. 

First, using (2Oa), (19a), and the definition (15), 

Pf(m, t) = Prob{ln(l/rJ < B,( co)} 
= Prob{exp[--B,( co)] < rl < 1). 

But since rl is a random number from the uniform distribution in the unit interval, 
then we have from (18) 

Pf(m, t) = 1 - exp[--B,( co)]. CW 

Comparing (21a) with (17a), we see that P,*(m, t) = Pl(m, t). 
If (19a) is satisfied, rI can then be regarded as a random number from the uniform 

distribution in the interval (exp[--B,( co)], 1); i.e., when we come to (19b), rl is a 
random number whose probability density function is 

p(rl) = (1 - ew--Bm(~W1, 
= 0, 

for exp[--B,( cc)] < rl < 1; 
otherwise. 

The transformation (19b) produces from rl a new random variable 7, whose proba- 
bility density function is determined by the rule 

P,*(T I m, t) = p(rl) j dr,/dT / = (1 - exp[--B,( co)]}-’ 1 dr,/dT I 

Now (19b) implies that 

so 

dr,/d-r = --A,(T) eXp [- IT ii,(T’) d+] = --A,(T) eXp[-B,(T)], 
0 

where we have used (15). Substituting this into the above equation for P2*(, I m, t) 
gives 

pz(T 1 m, t) = (1 - eXp[-&( a)]}-’ A,(T) eXp[-B,(T)]. CW 

Comparing (21b) with (17b), we see that P,*(T I m, t) = P2(7 1 m, t). 
Finally, the probability that (19c) will be satisfied for the index n is evidently 

n-1 

P,*(n 1 m, t; T) = Prob c An,m(~)/A,(~) < r2 < i An*m(~)/A,(~) . 
?I'=1 Tz'=l I 
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But since I-, is a random number from the unit-interval uniform distribution, then 
by (18) we have 

P,*(n / m, t; T) = [m$, Ad,(T)!A4T)] - [If: &dT)/4dT)] 

Comparing (21~) with (17c), we see that P,*(?r. 1 m, t; T) = P,(n 1 m, I; T). 

Since PI , Pz , and P, condition P(T, n 1 m, t) according to (13), we may therefore 
conclude that P(T, n I m, t) is indeed the joint probability density function of the 
(T, n) pair generated by the algorithm (19). 

5. SOME EXAMPLES 

We conclude by working out the stepping algorithm (19) for three simple functional 
fOrIIIS Of A,(T). 

EXAMPLE 1. A,,(T) = an,,, (constant). (2% 

This, as mentioned earlier, is the transition probability rate for the Markov process. 
Defining 

a, = C anm , (22b) 
n 

it fOllOWS that A,(T) = a, , so 

I T &(T’) dT = f&T. 
0 

For 7 = co this integral diverges (assuming a, # 0), so the check (19a) may be 
omitted. (19b) becomes 

a,,,7 = hI(l/r,) 

and can be SolvedLexplicitly for T. Hence, the stepping algorithm is: 

Draw r, and r, from URN; take 

and take n so that 
7 = (l,/am)h(l/rl), 

n-1 

c anlm < r,a, < i anjm . 
?Z'=l 9%'=1 

(234 

(23b) 
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This is the generating procedure used in [2] to simulate the stochastic behavior of a 
chemically reacting system, except that there, as noted earlier, the state index was 
replaced by a transition channel index in order to facilitate Step 1 of the simulation 
procedure. 

EXAMPLE 2. A,,(T) = anmrh (cd, > -1). (244 

Defining 

a, = T anm , (24b) 

it follows that A,(T) = a&m, so 

s 
’ A&T’) dT’ = amT(am+l)/(am + 1). 

0 

Since 01, > - 1, this integral diverges for 7 = co (assuming a, # 0), so the check 
(19a) may be omitted. (19b) becomes 

a m ~(~m+~)/(a~ + 1) = ln(l/r,) 

which can be solved explicitly for 7. Equation (19~) may be simplified by noting that 
&n(~)/&(~) = %n/% - Hence, the stepping algorithm is: 

Draw rl and r2 from URN; take 

7 = [(urn + l)(l/am) h(l/rl)]l’(“t”+l), 
and take n so that 

72-l 

c adm < r,a, < i anrm . 
?z’=l n’=l 

Wb) 

Notice that, for s = 0, (25) reduces to (23), as expected. 

EXAMPLE 3. A&T) = anmeO”r (%I > 0). (2W 

This case should not be confused with the (Markovian) case in which i&T 1 m) in (2) 
is an exponentially decaying function of 7. Defining 

it follows that A,(T) = ame-&mT, so 

Since 
s 

’ A&T’) d7’ = (am/olm)[l - e?‘“?. 
0 

s m A,(T’) dT’ = a,/c& < Co 
0 
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then the test (19a) cannot be omitted. Equation (19b) reads 

(u~/cx~)[~ - e-“““] = ln(l/ra 

which can be solved explicitly for 7. Equation (19c) may be simplified by noting that 
&d+&(~) = a,,lam . Hence, the stepping algorithm is: 

Draw rl and r2 from URN. If In(l/r,) 3 u,,,/~l~ then terminate the random 
walk in the present state S, ; if ln(l/r,) < a&, , take 

and take n so that 

n-1 
c adm < r,a, < f anlm . 

n*=1 t&t’=1 
Wb) 

In the foregoing three examples it will be noted that the n-selection algorithms are 
identical; it is only in the r-selection algorithms for Examples 2 and 3 that the residence 
time parameter or, enters. This implies that these three random walks will differ only 
in their “time schedules” and not in their “routes” (except that in the third example 
the journey may be abruptly terminated). It is obvious from (19c) and (4) that this will 
be the case for all random walks whose transition probability rate functions A,,(T) 
have the form a,&(~, m), f being an arbitrary function. 
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